Printed Labels Could Harvest Radio Power From Phones

Swedish researchers have demonstrated a smart label which can scavenge radio energy from mobile phones and could enable Internet of Things (IoT) applications.

The scientists at Linkoping University, along with industry partners, have produced an all-printed diode which can harvest radio waves at 1.6GHz, using them to generate electrical power, according to a paper published at the Proceedings of the National Acadamy of Sciences (PNAS) of the US. The resulting label operates at more useful frequencies than previous efforts, and loks like a serious contender for IoT use.

Self-powering labels

Internet of things applications place sensors on everyday objects, so they can be tracked, monitored and controlled. It requires low energy devices, and works best if they can be powered indefinitely using energy gathered from the environment. Radio energy havesting has always looked a good contender for the job, as it is widely available in the air, and can be gathered using electromagnetic induction, by spiral-shaped printed electrodes.

The researchers, backed by industrial partners from De La Rue in the UK and Acreo in Switzerland improved on previous work by Acreo, which used frequencies in the region of 100MHz, where signals carry lower energy, and are less widely available. Moving up to 1.6GHz takes the technology into the domain of mobile phone communications, and the group hopes to reach 2.4GHz where Bluetooth and Wi-Fi (and microwave ovens) produce a fair amount of energy.

“This is the first time anyone has done anything like this in the gigahertz region,” says Göran Gustafsson, a materials scientist at the Norrköping branch of the Acreo Swedish ICT research institution quoted in IEEE Spectrum. “This is the starting point of having paper connected to the Internet.”

The researchers took crystalline silicon, doped it with antimony and crushed it into tiny particles around 1 micron across. These were printed onto an aluminium electrode and coated with niobium silicide microparticles and linked to a carbon electrode and silver paste. The large antenna which gathers the power is made of aluminium.

The whole device likes 1.6GHz waves best, but could still get 19 microAmps from a 1.8GHz smartphone signal, if it was used right up against the label.

That is still quite a long way from anything really usable, as the range and frequency need tweaking. The researchers also hope to reduce the need for expensive niobium and silver in the labels. But the manufacturing process eliminates the vaccuum and temperature extremes required by earlier experiments, and marks a major step towards labels which could make Internet of Things applications more practical.

Are you ready for the Internet of Things?

Peter Judge

Peter Judge has been involved with tech B2B publishing in the UK for many years, working at Ziff-Davis, ZDNet, IDG and Reed. His main interests are networking security, mobility and cloud

Recent Posts

US SEC Seeks $5.3 Billion Fine From Terra’s Do Kwon

Financial regulator asks New York judge to impose $5.3 billion in fines against Terraform Labs…

25 mins ago

Microsoft Launches Smallest AI Model, Phi-3-mini

Lightweight artificial intelligence model launched this week by Microsoft, offering more cost-effective option for Azure…

4 hours ago

US Senate Passes TikTok Ban Or Divestment Bill

ByteDance protest falls on deaf ears, as Senate passes TikTok ban or divest bill, with…

5 hours ago

Raimondo Downplays Huawei Smartphone Chip

US Commerce Secretary Gina Raimondo says Huawei's flagship smartphone chip 'years behind' US technology, shows…

1 day ago

Cloud Companies Reject Broadcom VMware Pricing Changes

Cloud companies, business user groups say Broadcom price changes do not address their concerns, as…

1 day ago

UK Lawsuit Claims Grindr Shared HIV Status

Dating app Grindr sued over claims it shared sensitive user data, including HIV status, with…

1 day ago